253 research outputs found

    Tight Size-Degree Bounds for Sums-of-Squares Proofs

    Full text link
    We exhibit families of 44-CNF formulas over nn variables that have sums-of-squares (SOS) proofs of unsatisfiability of degree (a.k.a. rank) dd but require SOS proofs of size nΩ(d)n^{\Omega(d)} for values of d=d(n)d = d(n) from constant all the way up to nδn^{\delta} for some universal constantδ\delta. This shows that the nO(d)n^{O(d)} running time obtained by using the Lasserre semidefinite programming relaxations to find degree-dd SOS proofs is optimal up to constant factors in the exponent. We establish this result by combining NP\mathsf{NP}-reductions expressible as low-degree SOS derivations with the idea of relativizing CNF formulas in [Kraj\'i\v{c}ek '04] and [Dantchev and Riis'03], and then applying a restriction argument as in [Atserias, M\"uller, and Oliva '13] and [Atserias, Lauria, and Nordstr\"om '14]. This yields a generic method of amplifying SOS degree lower bounds to size lower bounds, and also generalizes the approach in [ALN14] to obtain size lower bounds for the proof systems resolution, polynomial calculus, and Sherali-Adams from lower bounds on width, degree, and rank, respectively

    Narrow Proofs May Be Maximally Long

    Get PDF
    We prove that there are 3-CNF formulas over n variables that can be refuted in resolution in width w but require resolution proofs of size n^Omega(w). This shows that the simple counting argument that any formula refutable in width w must have a proof in size n^O(w) is essentially tight. Moreover, our lower bound generalizes to polynomial calculus resolution (PCR) and Sherali-Adams, implying that the corresponding size upper bounds in terms of degree and rank are tight as well. Our results do not extend all the way to Lasserre, however, where the formulas we study have proofs of constant rank and size polynomial in both n and w

    Narrow proofs may be maximally long

    Get PDF
    We prove that there are 3-CNF formulas over n variables that can be refuted in resolution in width w but require resolution proofs of size n(Omega(w)). This shows that the simple counting argument that any formula refutable in width w must have a proof in size n(O(w)) is essentially tight. Moreover, our lower bound generalizes to polynomial calculus resolution and Sherali-Adams, implying that the corresponding size upper bounds in terms of degree and rank are tight as well. The lower bound does not extend all the way to Lasserre, however, since we show that there the formulas we study have proofs of constant rank and size polynomial in both n and w.Peer ReviewedPostprint (author's final draft

    On the proof complexity of Paris-harrington and off-diagonal ramsey tautologies

    Get PDF
    We study the proof complexity of Paris-Harrington’s Large Ramsey Theorem for bi-colorings of graphs and of off-diagonal Ramsey’s Theorem. For Paris-Harrington, we prove a non-trivial conditional lower bound in Resolution and a non-trivial upper bound in bounded-depth Frege. The lower bound is conditional on a (very reasonable) hardness assumption for a weak (quasi-polynomial) Pigeonhole principle in RES(2). We show that under such an assumption, there is no refutation of the Paris-Harrington formulas of size quasipolynomial in the number of propositional variables. The proof technique for the lower bound extends the idea of using a combinatorial principle to blow up a counterexample for another combinatorial principle beyond the threshold of inconsistency. A strong link with the proof complexity of an unbalanced off-diagonal Ramsey principle is established. This is obtained by adapting some constructions due to Erdos and Mills. ˝ We prove a non-trivial Resolution lower bound for a family of such off-diagonal Ramsey principles

    Semantic Versus Syntactic Cutting Planes

    Get PDF
    In this paper, we compare the strength of the semantic and syntactic version of the cutting planes proof system. First, we show that the lower bound technique of [22] applies also to semantic cutting planes: the proof system has feasible interpolation via monotone real circuits, which gives an exponential lower bound on lengths of semantic cutting planes refutations. Second, we show that semantic refutations are stronger than syntactic ones. In particular, we give a formula for which any refutation in syntactic cutting planes requires exponential length, while there is a polynomial length refutation in semantic cutting planes. In other words, syntactic cutting planes does not p-simulate semantic cutting planes. We also give two incompatible integer inequalities which require exponential length refutation in syntactic cutting planes. Finally, we pose the following problem, which arises in connection with semantic inference of arity larger than two: can every multivariate non-decreasing real function be expressed as a composition of non-decreasing real functions in two variables

    Monte Carlo evaluation of the impact of subsequent strokes on backflashover rate

    Get PDF
    The paper deals with the impact of subsequent strokes on the backflashover rate (BFR) of HV overhead transmission lines (OHLs), assessed by means of an ATP-EMTP Monte Carlo procedure. The application to a typical 150 kV Italian OHL is discussed, simulating several tower grounding system arrangements. Subsequent strokes parameters are added to the statistical simulation variables: Peak current, front time, time-to-half value, lightning polarity, line insulation withstand, lightning location and phase angle of the power frequency voltage. The input data are fed to an ATP-EMTP complete circuit model of the OHL, including line insulation, lightning representation and tower grounding system, the latter simulated by a pi-circuit model able to simulate the effects due to propagation and soil ionization, at modest computational costs. Numerical results evidence a non-negligible BFR increase (in relative terms) due to subsequent strokes: for spatially concentrated grounding systems the BFR increase approximatively vary in inverse proportion with the low frequency grounding resistance, whereas for spatially extended grounding systems the BFR increase depends on the grounding system behavior at high frequencies

    An equivalent circuit for the evaluation of cross-country fault currents in medium voltage (MV) distribution networks

    Get PDF
    A Cross-Country Fault (CCF) is the simultaneous occurrence of a couple of Line-to-Ground Faults (LGFs), affecting different phases of same feeder or of two distinct ones, at different fault locations. CCFs are not uncommon in medium voltage (MV) public distribution networks operated with ungrounded or high-impedance neutral: despite the relatively small value of LGF current that is typical of such networks, CCF currents can be comparable to those that are found in Phase-To-Phase Faults, if the affected feeder(s) consists of cables. This occurs because the faulted cables' sheaths/screens provide a continuous, relatively low-impedance metallic return path to the fault currents. An accurate evaluation is in order, since the resulting current magnitudes can overheat sheaths/screens, endangering cable joints and other plastic sheaths. Such evaluation, however, requires the modeling of the whole MV network in the phase domain, simulating cable screens and their connections to the primary and secondary substation earth electrodes by suitable computer programs, such as ATP (which is the acronym for alternative transient program) or EMTP (the acronym for electromagnetic transient program), with substantial input data being involved. This paper presents a simplified yet accurate circuit model of the faulted MV network, taking into account the CCF currents' return path (cable sheaths/screens, ground conductors, and earthing resistances of secondary substations). The proposed CCF model can be implemented in a general-purpose simulation program, and it yields accurate fault currents estimates: for a 20 kV network case study, the comparison with accurate ATP simulations evidences mismatches mostly smaller than 2%, and never exceeding 5%

    Graph Colouring is Hard for Algorithms Based on Hilbert's Nullstellensatz and Gr\"{o}bner Bases

    Full text link
    We consider the graph kk-colouring problem encoded as a set of polynomial equations in the standard way over 0/10/1-valued variables. We prove that there are bounded-degree graphs that do not have legal kk-colourings but for which the polynomial calculus proof system defined in [Clegg et al '96, Alekhnovich et al '02] requires linear degree, and hence exponential size, to establish this fact. This implies a linear degree lower bound for any algorithms based on Gr\"{o}bner bases solving graph kk-colouring using this encoding. The same bound applies also for the algorithm studied in a sequence of papers [De Loera et al '08,'09,'11,'15] based on Hilbert's Nullstellensatz proofs for a slightly different encoding, thus resolving an open problem mentioned in [De Loera et al '08,'09,'11] and [Li '16]. We obtain our results by combining the polynomial calculus degree lower bound for functional pigeonhole principle (FPHP) formulas over bounded-degree bipartite graphs in [Mik\v{s}a and Nordstr\"{o}m '15] with a reduction from FPHP to kk-colouring derivable by polynomial calculus in constant degree
    • …
    corecore